Sklearn 'Seed' Not Working Properly In a Section of Code
$begingroup$
I have written an ensemble using Scikit Learn VotingClassifier
.
I have set a seed in the cross validation section. However, it does not appear to 'hold'. Meaning, If I re-run the code block I get different results. (I can only assume each run of the code block is dividing the dataset into folds with different constituents instead of 'freezing' the random state.
Here is the code:
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression()
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier()
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print(results)
The results printed are the results of the 10 CV fold training. If I run this code block several times I get the following results:
1:
[0.70588235 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.9375 ]
2:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
3:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
4:
[0.76470588 0.94117647 1. 0.82352941 1. 0.88235294
0.8125 0.875 0.625 0.875 ]
So it appears my random_state=seed
isn't holding.
What is incorrect?
Thanks in advance.
python scikit-learn ensemble
$endgroup$
add a comment |
$begingroup$
I have written an ensemble using Scikit Learn VotingClassifier
.
I have set a seed in the cross validation section. However, it does not appear to 'hold'. Meaning, If I re-run the code block I get different results. (I can only assume each run of the code block is dividing the dataset into folds with different constituents instead of 'freezing' the random state.
Here is the code:
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression()
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier()
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print(results)
The results printed are the results of the 10 CV fold training. If I run this code block several times I get the following results:
1:
[0.70588235 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.9375 ]
2:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
3:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
4:
[0.76470588 0.94117647 1. 0.82352941 1. 0.88235294
0.8125 0.875 0.625 0.875 ]
So it appears my random_state=seed
isn't holding.
What is incorrect?
Thanks in advance.
python scikit-learn ensemble
$endgroup$
add a comment |
$begingroup$
I have written an ensemble using Scikit Learn VotingClassifier
.
I have set a seed in the cross validation section. However, it does not appear to 'hold'. Meaning, If I re-run the code block I get different results. (I can only assume each run of the code block is dividing the dataset into folds with different constituents instead of 'freezing' the random state.
Here is the code:
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression()
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier()
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print(results)
The results printed are the results of the 10 CV fold training. If I run this code block several times I get the following results:
1:
[0.70588235 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.9375 ]
2:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
3:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
4:
[0.76470588 0.94117647 1. 0.82352941 1. 0.88235294
0.8125 0.875 0.625 0.875 ]
So it appears my random_state=seed
isn't holding.
What is incorrect?
Thanks in advance.
python scikit-learn ensemble
$endgroup$
I have written an ensemble using Scikit Learn VotingClassifier
.
I have set a seed in the cross validation section. However, it does not appear to 'hold'. Meaning, If I re-run the code block I get different results. (I can only assume each run of the code block is dividing the dataset into folds with different constituents instead of 'freezing' the random state.
Here is the code:
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression()
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier()
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print(results)
The results printed are the results of the 10 CV fold training. If I run this code block several times I get the following results:
1:
[0.70588235 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.9375 ]
2:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
3:
[0.76470588 0.94117647 1. 0.82352941 0.94117647 0.88235294
0.8125 0.875 0.8125 0.875 ]
4:
[0.76470588 0.94117647 1. 0.82352941 1. 0.88235294
0.8125 0.875 0.625 0.875 ]
So it appears my random_state=seed
isn't holding.
What is incorrect?
Thanks in advance.
python scikit-learn ensemble
python scikit-learn ensemble
asked 10 hours ago
Windstorm1981Windstorm1981
1455
1455
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Random seed of models (LogisticRegression, GradientBoostingClassifier) needs to be fixed too, so that their random behavior becomes reproducible. Here is a working example that produces the same result over multiple runs:
import sklearn
from sklearn.model_selection import KFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier
import numpy as np
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
# Data
np.random.seed(seed)
feature_1 = np.random.normal(0, 2, 10000)
feature_2 = np.random.normal(5, 6, 10000)
X_train = np.vstack([feature_1, feature_2]).T
Y_train = np.random.randint(0, 2, 10000).T
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression(random_state=seed)
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier(random_state=seed)
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print('sklearn version', sklearn.__version__)
print(results)
Output:
sklearn version 0.19.1
[0.502 0.496 0.483 0.513 0.515 0.508 0.517 0.499 0.515 0.504]
$endgroup$
$begingroup$
Thanks for your quick reply. Not sure I follow completely.random_state=seed
fixes my cross validation. I note your linenp.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399026%2fsklearn-seed-not-working-properly-in-a-section-of-code%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Random seed of models (LogisticRegression, GradientBoostingClassifier) needs to be fixed too, so that their random behavior becomes reproducible. Here is a working example that produces the same result over multiple runs:
import sklearn
from sklearn.model_selection import KFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier
import numpy as np
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
# Data
np.random.seed(seed)
feature_1 = np.random.normal(0, 2, 10000)
feature_2 = np.random.normal(5, 6, 10000)
X_train = np.vstack([feature_1, feature_2]).T
Y_train = np.random.randint(0, 2, 10000).T
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression(random_state=seed)
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier(random_state=seed)
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print('sklearn version', sklearn.__version__)
print(results)
Output:
sklearn version 0.19.1
[0.502 0.496 0.483 0.513 0.515 0.508 0.517 0.499 0.515 0.504]
$endgroup$
$begingroup$
Thanks for your quick reply. Not sure I follow completely.random_state=seed
fixes my cross validation. I note your linenp.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
add a comment |
$begingroup$
Random seed of models (LogisticRegression, GradientBoostingClassifier) needs to be fixed too, so that their random behavior becomes reproducible. Here is a working example that produces the same result over multiple runs:
import sklearn
from sklearn.model_selection import KFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier
import numpy as np
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
# Data
np.random.seed(seed)
feature_1 = np.random.normal(0, 2, 10000)
feature_2 = np.random.normal(5, 6, 10000)
X_train = np.vstack([feature_1, feature_2]).T
Y_train = np.random.randint(0, 2, 10000).T
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression(random_state=seed)
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier(random_state=seed)
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print('sklearn version', sklearn.__version__)
print(results)
Output:
sklearn version 0.19.1
[0.502 0.496 0.483 0.513 0.515 0.508 0.517 0.499 0.515 0.504]
$endgroup$
$begingroup$
Thanks for your quick reply. Not sure I follow completely.random_state=seed
fixes my cross validation. I note your linenp.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
add a comment |
$begingroup$
Random seed of models (LogisticRegression, GradientBoostingClassifier) needs to be fixed too, so that their random behavior becomes reproducible. Here is a working example that produces the same result over multiple runs:
import sklearn
from sklearn.model_selection import KFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier
import numpy as np
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
# Data
np.random.seed(seed)
feature_1 = np.random.normal(0, 2, 10000)
feature_2 = np.random.normal(5, 6, 10000)
X_train = np.vstack([feature_1, feature_2]).T
Y_train = np.random.randint(0, 2, 10000).T
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression(random_state=seed)
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier(random_state=seed)
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print('sklearn version', sklearn.__version__)
print(results)
Output:
sklearn version 0.19.1
[0.502 0.496 0.483 0.513 0.515 0.508 0.517 0.499 0.515 0.504]
$endgroup$
Random seed of models (LogisticRegression, GradientBoostingClassifier) needs to be fixed too, so that their random behavior becomes reproducible. Here is a working example that produces the same result over multiple runs:
import sklearn
from sklearn.model_selection import KFold, cross_val_score
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier, VotingClassifier
import numpy as np
#Voting Ensemble of Classification
#Create Submodels
num_folds = 10
seed =7
# Data
np.random.seed(seed)
feature_1 = np.random.normal(0, 2, 10000)
feature_2 = np.random.normal(5, 6, 10000)
X_train = np.vstack([feature_1, feature_2]).T
Y_train = np.random.randint(0, 2, 10000).T
kfold = KFold(n_splits=num_folds, random_state=seed)
estimators =
model1 =LogisticRegression(random_state=seed)
estimators.append(('LR',model1))
model2 = KNeighborsClassifier()
estimators.append(('KNN',model2))
model3 = GradientBoostingClassifier(random_state=seed)
estimators.append(('GBM',model3))
#Create the ensemble
ensemble = VotingClassifier(estimators,voting='soft')
results = cross_val_score(ensemble, X_train, Y_train,cv=kfold)
print('sklearn version', sklearn.__version__)
print(results)
Output:
sklearn version 0.19.1
[0.502 0.496 0.483 0.513 0.515 0.508 0.517 0.499 0.515 0.504]
edited 8 hours ago
answered 8 hours ago
EsmailianEsmailian
31115
31115
$begingroup$
Thanks for your quick reply. Not sure I follow completely.random_state=seed
fixes my cross validation. I note your linenp.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
add a comment |
$begingroup$
Thanks for your quick reply. Not sure I follow completely.random_state=seed
fixes my cross validation. I note your linenp.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
$begingroup$
Thanks for your quick reply. Not sure I follow completely.
random_state=seed
fixes my cross validation. I note your line np.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
Thanks for your quick reply. Not sure I follow completely.
random_state=seed
fixes my cross validation. I note your line np.random.seed(seed)
. Intuitively it suggests to me it is ensuring repeatable generation of toy data. I already have a data set. How does that apply to 'fixing seed of models'?$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
$begingroup$
@Windstorm1981 My bad. Updated.
$endgroup$
– Esmailian
8 hours ago
1
1
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
$begingroup$
ha! Clear now. So fixing the cv fixes the data splits. Fixing the models fixes how the models handle the (fixed) data splits?
$endgroup$
– Windstorm1981
8 hours ago
1
1
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
$begingroup$
@Windstorm1981 Exactly!
$endgroup$
– Esmailian
8 hours ago
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f399026%2fsklearn-seed-not-working-properly-in-a-section-of-code%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown