期待値




確率論において、確率変数の期待値(きたいち、英: expected value)とは、確率変数のすべての値に確率の重みをつけた加重平均である。確率分布に対して定義する場合は「平均」と呼ばれることが多い。


例えば、ギャンブルにおいて掛け金に対して戻る金額の期待値とは、戻ってくる「見込み」の金額である。ただし、確率変数が期待値を取る確率が最大とは限らず、確率変数が期待値を取るわけでもない。しかし、独立同分布であれば、標本平均は期待値に収束することが知られている(大数の法則)。




目次






  • 1 定義


    • 1.1 離散型確率変数


    • 1.2 連続型確率変数


    • 1.3 日本工業規格




  • 2 性質


  • 3 計算法


  • 4


    • 4.1 サイコロの目の期待値


    • 4.2 くじの賞金の期待値




  • 5 脚注


  • 6 参考文献


  • 7 関連項目





定義



離散型確率変数


確率空間 (Ω, F, P) において、確率変数 X が高々可算個 x1, x2, … を取るとき(離散型確率変数)、X の期待値は


E[X]=∑i=1∞xiP(X=xi){displaystyle E[X]=sum _{i=1}^{infty }x_{i}P(X=x_{i})}E[X]=sum _{{i=1}}^{{infty }}x_{i}P(X=x_{i})

で定義される。



連続型確率変数


確率空間 ,F,P){displaystyle (Omega ,{mathcal {F}},P)}{displaystyle (Omega ,{mathcal {F}},P)} において、確率変数 X が実数などの連続値を取る(非可算無限)であるとき(連続型確率変数)、可積分な確率変数 X の期待値は


E[X]=∫ΩX(ω)dP(ω){displaystyle E[X]=int _{Omega }X(omega ),dP(omega )}{displaystyle E[X]=int _{Omega }X(omega ),dP(omega )}

で定義される。ただし確率変数 X が可積分であるとは、


Ω|X(ω)|dP(ω)<∞{displaystyle int _{Omega }|X(omega )|,dP(omega )<infty }{displaystyle int _{Omega }|X(omega )|,dP(omega )<infty }

を満たすことであり、この積分は抽象的なルベーグ積分である。


事象 A∈F{displaystyle Ain {mathcal {F}}}Ain {mathcal {F}} に対して、


E[X:A]=E[1AX]=∫AX(ω)dP(ω){displaystyle E[X:A]=E[1_{A}X]=int _{A}X(omega ),dP(omega )}{displaystyle E[X:A]=E[1_{A}X]=int _{A}X(omega ),dP(omega )}

と書いて期待値をとる範囲を A に制限する。ここで 1A は指示関数である。



日本工業規格


日本工業規格では、値 xi が出現する確率を pi = Pr{X = xi} とする離散確率分布に対する期待値と、確率密度関数 f(x) を持つ連続確率分布の期待値を定義している。多数回の測定を行い測定値の平均を求めると、期待値に近い値になる。関数 g(X) の期待値 E[g(X)] も同様に定義している。また、条件付き分布の期待値を条件付期待値、XY の同時分布に関し、条件 Y = y の下での X の条件付期待値が y の関数になること、確率変数 X の期待値を X の母平均ということを紹介している[1]



性質


期待値は総和や積分によって定義されるので、総和や積分のもつ性質をすべて持っている。以下、X, Y を確率変数、a, b をスカラーとする。



  • 線形性
    E[aX+bY]=aE[X]+bE[Y]{displaystyle E[aX+bY]=aE[X]+bE[Y]}{displaystyle E[aX+bY]=aE[X]+bE[Y]}


  • 単調性
    X≤Y⇒E[X]≤E[Y]{displaystyle Xleq YRightarrow E[X]leq E[Y]}{displaystyle Xleq YRightarrow E[X]leq E[Y]}



  • イェンセンの不等式:凸関数 φ に対して、
    φ(E[X])≤E[φ(X)]{displaystyle varphi (E[X])leq E[varphi (X)]}{displaystyle varphi (E[X])leq E[varphi (X)]}



  • チェビシェフの不等式:(0, ∞) 上で定義された正値単調増加関数 φ と任意の正の数 ε に対して、
    P(|X|>ε)≤E[φ(X)]φ){displaystyle P(|X|>varepsilon )leq {frac {E[varphi (X)]}{varphi (varepsilon )}}}{displaystyle P(|X|>varepsilon )leq {frac {E[varphi (X)]}{varphi (varepsilon )}}}



さらに、2つの可積分な確率変数 XY が独立の場合は、


E[XY]=E[X]E[Y]{displaystyle E[XY]=E[X]E[Y]}{displaystyle E[XY]=E[X]E[Y]}

が成立する。



計算法


連続型確率変数の期待値はルベーグ積分で定義されているので、計算するときには積分の変数変換を行って確率変数の分布で積分するのが普通である。確率変数 X の分布を PX とすると、任意の可測関数 f に対して


E[f(X)]=∫Ωf(X(ω))dP(ω)=∫Rf(x)PX(dx){displaystyle E[f(X)]=int _{Omega }f(X(omega )),dP(omega )=int _{mathbb {R} }f(x),P_{X}(dx)}{displaystyle E[f(X)]=int _{Omega }f(X(omega )),dP(omega )=int _{mathbb {R} }f(x),P_{X}(dx)}

となり、さらに PX が確率密度関数 p を持つときは


E[f(X)]=∫Rf(x)p(x)dx{displaystyle E[f(X)]=int _{mathbb {R} }f(x)p(x),dx}{displaystyle E[f(X)]=int _{mathbb {R} }f(x)p(x),dx}

により、ルベーグ測度で計算できるようになる。






サイコロの目の期待値


6 面体のサイコロを 1 回振る。ただし出る目の確率はすべて 1/6 とする。出る目 X の期待値は


E[X]=1×16+2×16+3×16+4×16+5×16+6×16=216=3.5{displaystyle E[X]=1times {frac {1}{6}}+2times {frac {1}{6}}+3times {frac {1}{6}}+4times {frac {1}{6}}+5times {frac {1}{6}}+6times {frac {1}{6}}={frac {21}{6}}=3.5}{displaystyle E[X]=1times {frac {1}{6}}+2times {frac {1}{6}}+3times {frac {1}{6}}+4times {frac {1}{6}}+5times {frac {1}{6}}+6times {frac {1}{6}}={frac {21}{6}}=3.5}


くじの賞金の期待値


次のようなゲームを考える。



  • 100 円支払えば、6 面サイコロ 1 個を 1 回振ることができる。

  • サイコロの出た目に応じて次の金額 X 円がもらえる。





















出た目 1 2 3 4 5 6

X
20 50 100 100 150 150

このとき、もらえる金額 X の期待値は


E[X]=20×16+50×16+100×16+100×16+150×16+150×16=95{displaystyle E[X]=20times {frac {1}{6}}+50times {frac {1}{6}}+100times {frac {1}{6}}+100times {frac {1}{6}}+150times {frac {1}{6}}+150times {frac {1}{6}}=95}{displaystyle E[X]=20times {frac {1}{6}}+50times {frac {1}{6}}+100times {frac {1}{6}}+100times {frac {1}{6}}+150times {frac {1}{6}}+150times {frac {1}{6}}=95}

となり、参加費 100 円より少ない。このことから、このゲームは平均的には1回あたり5円の損をし、回数を繰り返すほど損をするといえる(大数の法則)。



脚注





  1. ^ JIS Z 8101-1 1999 統計−用語と記号−第1部:確率及び一般統計用語(日本規格協会)




参考文献



  • 西岡康夫 『数学チュートリアル やさしく語る 確率統計』 オーム社、2013年。.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 9784274214073。

  • 伏見康治 『確率論及統計論』 河出書房、1942年。
    ISBN 9784874720127。

  • 日本数学会 『数学辞典』 岩波書店、2007年。
    ISBN 9784000803090。


  • JIS Z 8101-1 1999 統計−用語と記号−第1部:確率及び一般統計用語(日本規格協会)



関連項目




  • 確率論


    • モーメント - 分散

    • 特性関数

    • 条件付期待値




  • サンクトペテルブルクのパラドックス - 期待値が求められない例

  • 大数の法則





Popular posts from this blog

How to make a Squid Proxy server?

Is this a new Fibonacci Identity?

19世紀