Uniform continuity implies existence of limit of integral
$begingroup$
Let $f: (0,1) rightarrow mathbb{R} $ be uniformly continuous. Prove that $$ lim_{epsilon to 0} int^{1-epsilon}_{epsilon}!!f(t)dt in mathbb{R}$$ Any ideas?? $f$ can be extended to a continuous function $hat{f}$ in $[0,1]$, so an integrable one. My best guess is the integral will equal $int^{1}_{0}hat{f}(t),dt$. Am I correct?? A rigorous proof will be very much appreciated. Thanks in advance.
real-analysis integration uniform-continuity
New contributor
$endgroup$
add a comment |
$begingroup$
Let $f: (0,1) rightarrow mathbb{R} $ be uniformly continuous. Prove that $$ lim_{epsilon to 0} int^{1-epsilon}_{epsilon}!!f(t)dt in mathbb{R}$$ Any ideas?? $f$ can be extended to a continuous function $hat{f}$ in $[0,1]$, so an integrable one. My best guess is the integral will equal $int^{1}_{0}hat{f}(t),dt$. Am I correct?? A rigorous proof will be very much appreciated. Thanks in advance.
real-analysis integration uniform-continuity
New contributor
$endgroup$
add a comment |
$begingroup$
Let $f: (0,1) rightarrow mathbb{R} $ be uniformly continuous. Prove that $$ lim_{epsilon to 0} int^{1-epsilon}_{epsilon}!!f(t)dt in mathbb{R}$$ Any ideas?? $f$ can be extended to a continuous function $hat{f}$ in $[0,1]$, so an integrable one. My best guess is the integral will equal $int^{1}_{0}hat{f}(t),dt$. Am I correct?? A rigorous proof will be very much appreciated. Thanks in advance.
real-analysis integration uniform-continuity
New contributor
$endgroup$
Let $f: (0,1) rightarrow mathbb{R} $ be uniformly continuous. Prove that $$ lim_{epsilon to 0} int^{1-epsilon}_{epsilon}!!f(t)dt in mathbb{R}$$ Any ideas?? $f$ can be extended to a continuous function $hat{f}$ in $[0,1]$, so an integrable one. My best guess is the integral will equal $int^{1}_{0}hat{f}(t),dt$. Am I correct?? A rigorous proof will be very much appreciated. Thanks in advance.
real-analysis integration uniform-continuity
real-analysis integration uniform-continuity
New contributor
New contributor
edited 4 hours ago
Bernard
119k740113
119k740113
New contributor
asked 5 hours ago
nikos stebnikos steb
186
186
New contributor
New contributor
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Correct.
As the extension is bounded, where $|hat{f}(x)| leqslant M$ on $[0,1]$, we have as $epsilon to 0$,
$$left|int_0^1hat{f} - int_epsilon^{1-epsilon} f right| = left|int_0^1hat{f} - int_epsilon^{1-epsilon} hat{f} right|leqslant left|int_0^epsilon hat{f}right| + left|int_{1-epsilon}^1 hat{f} right| leqslant 2Mepsilon to 0$$
$endgroup$
add a comment |
$begingroup$
Hint: $int_epsilon^{1-epsilon} f = int_epsilon^{1-epsilon} hat f.$
$endgroup$
add a comment |
$begingroup$
Indeed, $f$ can be extended to $hat f$ on $[0,1]$. Let $epsilon > 0$. Then begin{align} bigg| int_{0}^1 hat fdx - int_{epsilon}^{1- epsilon} hat f dxbigg| &= bigg| int_{0}^{epsilon} hat f dx + int_{1-epsilon}^{epsilon} hat f dx bigg|
\
&leq 2epsilon ||hat f||_{infty}end{align}
where $||hat f||_{infty}$ is the supremum of $hat f$ over $[0,1]$ and is finite by uniform continuity on a compact set.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
nikos steb is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091451%2funiform-continuity-implies-existence-of-limit-of-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Correct.
As the extension is bounded, where $|hat{f}(x)| leqslant M$ on $[0,1]$, we have as $epsilon to 0$,
$$left|int_0^1hat{f} - int_epsilon^{1-epsilon} f right| = left|int_0^1hat{f} - int_epsilon^{1-epsilon} hat{f} right|leqslant left|int_0^epsilon hat{f}right| + left|int_{1-epsilon}^1 hat{f} right| leqslant 2Mepsilon to 0$$
$endgroup$
add a comment |
$begingroup$
Correct.
As the extension is bounded, where $|hat{f}(x)| leqslant M$ on $[0,1]$, we have as $epsilon to 0$,
$$left|int_0^1hat{f} - int_epsilon^{1-epsilon} f right| = left|int_0^1hat{f} - int_epsilon^{1-epsilon} hat{f} right|leqslant left|int_0^epsilon hat{f}right| + left|int_{1-epsilon}^1 hat{f} right| leqslant 2Mepsilon to 0$$
$endgroup$
add a comment |
$begingroup$
Correct.
As the extension is bounded, where $|hat{f}(x)| leqslant M$ on $[0,1]$, we have as $epsilon to 0$,
$$left|int_0^1hat{f} - int_epsilon^{1-epsilon} f right| = left|int_0^1hat{f} - int_epsilon^{1-epsilon} hat{f} right|leqslant left|int_0^epsilon hat{f}right| + left|int_{1-epsilon}^1 hat{f} right| leqslant 2Mepsilon to 0$$
$endgroup$
Correct.
As the extension is bounded, where $|hat{f}(x)| leqslant M$ on $[0,1]$, we have as $epsilon to 0$,
$$left|int_0^1hat{f} - int_epsilon^{1-epsilon} f right| = left|int_0^1hat{f} - int_epsilon^{1-epsilon} hat{f} right|leqslant left|int_0^epsilon hat{f}right| + left|int_{1-epsilon}^1 hat{f} right| leqslant 2Mepsilon to 0$$
answered 4 hours ago
RRLRRL
50.5k42573
50.5k42573
add a comment |
add a comment |
$begingroup$
Hint: $int_epsilon^{1-epsilon} f = int_epsilon^{1-epsilon} hat f.$
$endgroup$
add a comment |
$begingroup$
Hint: $int_epsilon^{1-epsilon} f = int_epsilon^{1-epsilon} hat f.$
$endgroup$
add a comment |
$begingroup$
Hint: $int_epsilon^{1-epsilon} f = int_epsilon^{1-epsilon} hat f.$
$endgroup$
Hint: $int_epsilon^{1-epsilon} f = int_epsilon^{1-epsilon} hat f.$
answered 4 hours ago
zhw.zhw.
72.4k43175
72.4k43175
add a comment |
add a comment |
$begingroup$
Indeed, $f$ can be extended to $hat f$ on $[0,1]$. Let $epsilon > 0$. Then begin{align} bigg| int_{0}^1 hat fdx - int_{epsilon}^{1- epsilon} hat f dxbigg| &= bigg| int_{0}^{epsilon} hat f dx + int_{1-epsilon}^{epsilon} hat f dx bigg|
\
&leq 2epsilon ||hat f||_{infty}end{align}
where $||hat f||_{infty}$ is the supremum of $hat f$ over $[0,1]$ and is finite by uniform continuity on a compact set.
$endgroup$
add a comment |
$begingroup$
Indeed, $f$ can be extended to $hat f$ on $[0,1]$. Let $epsilon > 0$. Then begin{align} bigg| int_{0}^1 hat fdx - int_{epsilon}^{1- epsilon} hat f dxbigg| &= bigg| int_{0}^{epsilon} hat f dx + int_{1-epsilon}^{epsilon} hat f dx bigg|
\
&leq 2epsilon ||hat f||_{infty}end{align}
where $||hat f||_{infty}$ is the supremum of $hat f$ over $[0,1]$ and is finite by uniform continuity on a compact set.
$endgroup$
add a comment |
$begingroup$
Indeed, $f$ can be extended to $hat f$ on $[0,1]$. Let $epsilon > 0$. Then begin{align} bigg| int_{0}^1 hat fdx - int_{epsilon}^{1- epsilon} hat f dxbigg| &= bigg| int_{0}^{epsilon} hat f dx + int_{1-epsilon}^{epsilon} hat f dx bigg|
\
&leq 2epsilon ||hat f||_{infty}end{align}
where $||hat f||_{infty}$ is the supremum of $hat f$ over $[0,1]$ and is finite by uniform continuity on a compact set.
$endgroup$
Indeed, $f$ can be extended to $hat f$ on $[0,1]$. Let $epsilon > 0$. Then begin{align} bigg| int_{0}^1 hat fdx - int_{epsilon}^{1- epsilon} hat f dxbigg| &= bigg| int_{0}^{epsilon} hat f dx + int_{1-epsilon}^{epsilon} hat f dx bigg|
\
&leq 2epsilon ||hat f||_{infty}end{align}
where $||hat f||_{infty}$ is the supremum of $hat f$ over $[0,1]$ and is finite by uniform continuity on a compact set.
answered 4 hours ago
OldGodzillaOldGodzilla
57425
57425
add a comment |
add a comment |
nikos steb is a new contributor. Be nice, and check out our Code of Conduct.
nikos steb is a new contributor. Be nice, and check out our Code of Conduct.
nikos steb is a new contributor. Be nice, and check out our Code of Conduct.
nikos steb is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3091451%2funiform-continuity-implies-existence-of-limit-of-integral%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown