Can the electrostatic force be infinite in magnitude?












3












$begingroup$


The magnitude of the electrostatic force between two charges $Q$ and $q$ separated by a distance $r$ is given by $$F=frac{kqQ}{r^2}$$ but the minimum value of $r$ must be $10^{-15} rm m$. Therefore, my question is can the electrostatic force ever be infinite?










share|cite|improve this question









New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
    $endgroup$
    – Aaron Stevens
    13 hours ago










  • $begingroup$
    @AaronStevens I think it's supposed to be the diameter of an electron.
    $endgroup$
    – Bob D
    13 hours ago










  • $begingroup$
    @BobD I thought it is supposed to be the length scale of the atomic nucleus?
    $endgroup$
    – Aaron Stevens
    13 hours ago












  • $begingroup$
    @AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
    $endgroup$
    – Bob D
    13 hours ago






  • 1




    $begingroup$
    @AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
    $endgroup$
    – Emilio Pisanty
    13 hours ago
















3












$begingroup$


The magnitude of the electrostatic force between two charges $Q$ and $q$ separated by a distance $r$ is given by $$F=frac{kqQ}{r^2}$$ but the minimum value of $r$ must be $10^{-15} rm m$. Therefore, my question is can the electrostatic force ever be infinite?










share|cite|improve this question









New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$








  • 1




    $begingroup$
    First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
    $endgroup$
    – Aaron Stevens
    13 hours ago










  • $begingroup$
    @AaronStevens I think it's supposed to be the diameter of an electron.
    $endgroup$
    – Bob D
    13 hours ago










  • $begingroup$
    @BobD I thought it is supposed to be the length scale of the atomic nucleus?
    $endgroup$
    – Aaron Stevens
    13 hours ago












  • $begingroup$
    @AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
    $endgroup$
    – Bob D
    13 hours ago






  • 1




    $begingroup$
    @AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
    $endgroup$
    – Emilio Pisanty
    13 hours ago














3












3








3





$begingroup$


The magnitude of the electrostatic force between two charges $Q$ and $q$ separated by a distance $r$ is given by $$F=frac{kqQ}{r^2}$$ but the minimum value of $r$ must be $10^{-15} rm m$. Therefore, my question is can the electrostatic force ever be infinite?










share|cite|improve this question









New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




The magnitude of the electrostatic force between two charges $Q$ and $q$ separated by a distance $r$ is given by $$F=frac{kqQ}{r^2}$$ but the minimum value of $r$ must be $10^{-15} rm m$. Therefore, my question is can the electrostatic force ever be infinite?







forces electrostatics electric-fields singularities coulombs-law






share|cite|improve this question









New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 10 hours ago









Qmechanic

106k121971227




106k121971227






New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 13 hours ago









AdityaAditya

192




192




New contributor




Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Aditya is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 1




    $begingroup$
    First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
    $endgroup$
    – Aaron Stevens
    13 hours ago










  • $begingroup$
    @AaronStevens I think it's supposed to be the diameter of an electron.
    $endgroup$
    – Bob D
    13 hours ago










  • $begingroup$
    @BobD I thought it is supposed to be the length scale of the atomic nucleus?
    $endgroup$
    – Aaron Stevens
    13 hours ago












  • $begingroup$
    @AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
    $endgroup$
    – Bob D
    13 hours ago






  • 1




    $begingroup$
    @AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
    $endgroup$
    – Emilio Pisanty
    13 hours ago














  • 1




    $begingroup$
    First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
    $endgroup$
    – Aaron Stevens
    13 hours ago










  • $begingroup$
    @AaronStevens I think it's supposed to be the diameter of an electron.
    $endgroup$
    – Bob D
    13 hours ago










  • $begingroup$
    @BobD I thought it is supposed to be the length scale of the atomic nucleus?
    $endgroup$
    – Aaron Stevens
    13 hours ago












  • $begingroup$
    @AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
    $endgroup$
    – Bob D
    13 hours ago






  • 1




    $begingroup$
    @AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
    $endgroup$
    – Emilio Pisanty
    13 hours ago








1




1




$begingroup$
First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
$endgroup$
– Aaron Stevens
13 hours ago




$begingroup$
First, you should explain why you think the minimum value $r$ can be is $10^{-15}$, since that would help know where you are coming from. Second, if you take this to be true, then wouldn't that necessarily mean the force cannot be infinite? It sounds like you are actually questioning this "minimum $r$" idea, which we cannot comment on since we do not know why you think this is the case.
$endgroup$
– Aaron Stevens
13 hours ago












$begingroup$
@AaronStevens I think it's supposed to be the diameter of an electron.
$endgroup$
– Bob D
13 hours ago




$begingroup$
@AaronStevens I think it's supposed to be the diameter of an electron.
$endgroup$
– Bob D
13 hours ago












$begingroup$
@BobD I thought it is supposed to be the length scale of the atomic nucleus?
$endgroup$
– Aaron Stevens
13 hours ago






$begingroup$
@BobD I thought it is supposed to be the length scale of the atomic nucleus?
$endgroup$
– Aaron Stevens
13 hours ago














$begingroup$
@AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
$endgroup$
– Bob D
13 hours ago




$begingroup$
@AaronStevens Yeah, could be. I my based my comment on the following reference Pauling, Linus. College Chemistry, San Francisco: Freeman, 1964 "The radius of an electron has not been fully determined exactly but it i known to be less than $1^{-13}$cm. But others have it different. I think the OP
$endgroup$
– Bob D
13 hours ago




1




1




$begingroup$
@AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
$endgroup$
– Emilio Pisanty
13 hours ago




$begingroup$
@AaronStevens I suspect Aditya is referring to the so-called "classical radius of the electron". Aditya - if that's the case, you should edit your question to make this explicit.
$endgroup$
– Emilio Pisanty
13 hours ago










3 Answers
3






active

oldest

votes


















9












$begingroup$

This




but the minimum value of $r$ must be $10^{-15} rm m$




sounds like you found a reference to the so-called "classical radius of the electron", possibly with some figures for the radii of atomic nuclei, but you did not fully understand what the former means.



The 'classical radius of the electron' $r_mathrm{cl}$ is the radius at which a spherical lump of charge would have an electrostatic self-energy equal to the rest energy $E_mathrm{rest} = m_e c^2$ of the electron. But the key word there is "would": the electron isn't a spherical lump of charge: as far as we can tell, it is a point particle with no internal structure that we've been able to detect ─ with a current experimental precision of the order of $10^{-18}:rm m$.



It is true, on the other hand, that when you're considering the electrostatic interactions between point particles at length scales shorter than about $10^{-10}:rm m$ (give or take, depending on what you're doing) you're going to need to change your framework from a classical viewpoint to one based on quantum mechanics, in which electrostatics remains mostly unchanged, but the whole mechanics itself (including the meanings of concepts like "trajectory", "distance" or "force") changes. Once you make that leap, the question of whether the electrostatic force can have infinite values becomes pretty much moot - but the singularity remains.






share|cite|improve this answer









$endgroup$





















    3












    $begingroup$

    Physically, an infinite force is not possible. The fact that the simple electrostatic model (Coulomb's law)



    $F=frac{kqQ}{r^2}$



    suggests an infinite (or at least an unbounded) force between two point charges as they get closer and closer together tells us that this must be an approximate model which does not hold for very small $r$. Either point charges do not occur in nature, or the $r^{-2}$ model is replaced by something else for small enough $r$.






    share|cite|improve this answer









    $endgroup$





















      3












      $begingroup$

      The classical physics equation $F = frac{kqQ}{r^2}$ has to be interpreted using quantum mechanics for sufficiently small length scales. So, its probably not appropriate to say that the force becomes infinite. A typical rule of thumb for the smallest length scale for which this applies is the Compton wavelength $lambda = frac{h}{mc}$. Here $h$ is Plank's constant, $c$ the speed of light and $m$ the particle mass. For an electron, this comes out to $2.4times 10^{-12}$m, but for a proton, it would be smaller.






      share|cite|improve this answer








      New contributor




      Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function () {
        return StackExchange.using("mathjaxEditing", function () {
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        });
        });
        }, "mathjax-editing");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "151"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: false,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: null,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });






        Aditya is a new contributor. Be nice, and check out our Code of Conduct.










        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468608%2fcan-the-electrostatic-force-be-infinite-in-magnitude%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        9












        $begingroup$

        This




        but the minimum value of $r$ must be $10^{-15} rm m$




        sounds like you found a reference to the so-called "classical radius of the electron", possibly with some figures for the radii of atomic nuclei, but you did not fully understand what the former means.



        The 'classical radius of the electron' $r_mathrm{cl}$ is the radius at which a spherical lump of charge would have an electrostatic self-energy equal to the rest energy $E_mathrm{rest} = m_e c^2$ of the electron. But the key word there is "would": the electron isn't a spherical lump of charge: as far as we can tell, it is a point particle with no internal structure that we've been able to detect ─ with a current experimental precision of the order of $10^{-18}:rm m$.



        It is true, on the other hand, that when you're considering the electrostatic interactions between point particles at length scales shorter than about $10^{-10}:rm m$ (give or take, depending on what you're doing) you're going to need to change your framework from a classical viewpoint to one based on quantum mechanics, in which electrostatics remains mostly unchanged, but the whole mechanics itself (including the meanings of concepts like "trajectory", "distance" or "force") changes. Once you make that leap, the question of whether the electrostatic force can have infinite values becomes pretty much moot - but the singularity remains.






        share|cite|improve this answer









        $endgroup$


















          9












          $begingroup$

          This




          but the minimum value of $r$ must be $10^{-15} rm m$




          sounds like you found a reference to the so-called "classical radius of the electron", possibly with some figures for the radii of atomic nuclei, but you did not fully understand what the former means.



          The 'classical radius of the electron' $r_mathrm{cl}$ is the radius at which a spherical lump of charge would have an electrostatic self-energy equal to the rest energy $E_mathrm{rest} = m_e c^2$ of the electron. But the key word there is "would": the electron isn't a spherical lump of charge: as far as we can tell, it is a point particle with no internal structure that we've been able to detect ─ with a current experimental precision of the order of $10^{-18}:rm m$.



          It is true, on the other hand, that when you're considering the electrostatic interactions between point particles at length scales shorter than about $10^{-10}:rm m$ (give or take, depending on what you're doing) you're going to need to change your framework from a classical viewpoint to one based on quantum mechanics, in which electrostatics remains mostly unchanged, but the whole mechanics itself (including the meanings of concepts like "trajectory", "distance" or "force") changes. Once you make that leap, the question of whether the electrostatic force can have infinite values becomes pretty much moot - but the singularity remains.






          share|cite|improve this answer









          $endgroup$
















            9












            9








            9





            $begingroup$

            This




            but the minimum value of $r$ must be $10^{-15} rm m$




            sounds like you found a reference to the so-called "classical radius of the electron", possibly with some figures for the radii of atomic nuclei, but you did not fully understand what the former means.



            The 'classical radius of the electron' $r_mathrm{cl}$ is the radius at which a spherical lump of charge would have an electrostatic self-energy equal to the rest energy $E_mathrm{rest} = m_e c^2$ of the electron. But the key word there is "would": the electron isn't a spherical lump of charge: as far as we can tell, it is a point particle with no internal structure that we've been able to detect ─ with a current experimental precision of the order of $10^{-18}:rm m$.



            It is true, on the other hand, that when you're considering the electrostatic interactions between point particles at length scales shorter than about $10^{-10}:rm m$ (give or take, depending on what you're doing) you're going to need to change your framework from a classical viewpoint to one based on quantum mechanics, in which electrostatics remains mostly unchanged, but the whole mechanics itself (including the meanings of concepts like "trajectory", "distance" or "force") changes. Once you make that leap, the question of whether the electrostatic force can have infinite values becomes pretty much moot - but the singularity remains.






            share|cite|improve this answer









            $endgroup$



            This




            but the minimum value of $r$ must be $10^{-15} rm m$




            sounds like you found a reference to the so-called "classical radius of the electron", possibly with some figures for the radii of atomic nuclei, but you did not fully understand what the former means.



            The 'classical radius of the electron' $r_mathrm{cl}$ is the radius at which a spherical lump of charge would have an electrostatic self-energy equal to the rest energy $E_mathrm{rest} = m_e c^2$ of the electron. But the key word there is "would": the electron isn't a spherical lump of charge: as far as we can tell, it is a point particle with no internal structure that we've been able to detect ─ with a current experimental precision of the order of $10^{-18}:rm m$.



            It is true, on the other hand, that when you're considering the electrostatic interactions between point particles at length scales shorter than about $10^{-10}:rm m$ (give or take, depending on what you're doing) you're going to need to change your framework from a classical viewpoint to one based on quantum mechanics, in which electrostatics remains mostly unchanged, but the whole mechanics itself (including the meanings of concepts like "trajectory", "distance" or "force") changes. Once you make that leap, the question of whether the electrostatic force can have infinite values becomes pretty much moot - but the singularity remains.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 13 hours ago









            Emilio PisantyEmilio Pisanty

            86k23213431




            86k23213431























                3












                $begingroup$

                Physically, an infinite force is not possible. The fact that the simple electrostatic model (Coulomb's law)



                $F=frac{kqQ}{r^2}$



                suggests an infinite (or at least an unbounded) force between two point charges as they get closer and closer together tells us that this must be an approximate model which does not hold for very small $r$. Either point charges do not occur in nature, or the $r^{-2}$ model is replaced by something else for small enough $r$.






                share|cite|improve this answer









                $endgroup$


















                  3












                  $begingroup$

                  Physically, an infinite force is not possible. The fact that the simple electrostatic model (Coulomb's law)



                  $F=frac{kqQ}{r^2}$



                  suggests an infinite (or at least an unbounded) force between two point charges as they get closer and closer together tells us that this must be an approximate model which does not hold for very small $r$. Either point charges do not occur in nature, or the $r^{-2}$ model is replaced by something else for small enough $r$.






                  share|cite|improve this answer









                  $endgroup$
















                    3












                    3








                    3





                    $begingroup$

                    Physically, an infinite force is not possible. The fact that the simple electrostatic model (Coulomb's law)



                    $F=frac{kqQ}{r^2}$



                    suggests an infinite (or at least an unbounded) force between two point charges as they get closer and closer together tells us that this must be an approximate model which does not hold for very small $r$. Either point charges do not occur in nature, or the $r^{-2}$ model is replaced by something else for small enough $r$.






                    share|cite|improve this answer









                    $endgroup$



                    Physically, an infinite force is not possible. The fact that the simple electrostatic model (Coulomb's law)



                    $F=frac{kqQ}{r^2}$



                    suggests an infinite (or at least an unbounded) force between two point charges as they get closer and closer together tells us that this must be an approximate model which does not hold for very small $r$. Either point charges do not occur in nature, or the $r^{-2}$ model is replaced by something else for small enough $r$.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 13 hours ago









                    gandalf61gandalf61

                    44428




                    44428























                        3












                        $begingroup$

                        The classical physics equation $F = frac{kqQ}{r^2}$ has to be interpreted using quantum mechanics for sufficiently small length scales. So, its probably not appropriate to say that the force becomes infinite. A typical rule of thumb for the smallest length scale for which this applies is the Compton wavelength $lambda = frac{h}{mc}$. Here $h$ is Plank's constant, $c$ the speed of light and $m$ the particle mass. For an electron, this comes out to $2.4times 10^{-12}$m, but for a proton, it would be smaller.






                        share|cite|improve this answer








                        New contributor




                        Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$


















                          3












                          $begingroup$

                          The classical physics equation $F = frac{kqQ}{r^2}$ has to be interpreted using quantum mechanics for sufficiently small length scales. So, its probably not appropriate to say that the force becomes infinite. A typical rule of thumb for the smallest length scale for which this applies is the Compton wavelength $lambda = frac{h}{mc}$. Here $h$ is Plank's constant, $c$ the speed of light and $m$ the particle mass. For an electron, this comes out to $2.4times 10^{-12}$m, but for a proton, it would be smaller.






                          share|cite|improve this answer








                          New contributor




                          Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$
















                            3












                            3








                            3





                            $begingroup$

                            The classical physics equation $F = frac{kqQ}{r^2}$ has to be interpreted using quantum mechanics for sufficiently small length scales. So, its probably not appropriate to say that the force becomes infinite. A typical rule of thumb for the smallest length scale for which this applies is the Compton wavelength $lambda = frac{h}{mc}$. Here $h$ is Plank's constant, $c$ the speed of light and $m$ the particle mass. For an electron, this comes out to $2.4times 10^{-12}$m, but for a proton, it would be smaller.






                            share|cite|improve this answer








                            New contributor




                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            $endgroup$



                            The classical physics equation $F = frac{kqQ}{r^2}$ has to be interpreted using quantum mechanics for sufficiently small length scales. So, its probably not appropriate to say that the force becomes infinite. A typical rule of thumb for the smallest length scale for which this applies is the Compton wavelength $lambda = frac{h}{mc}$. Here $h$ is Plank's constant, $c$ the speed of light and $m$ the particle mass. For an electron, this comes out to $2.4times 10^{-12}$m, but for a proton, it would be smaller.







                            share|cite|improve this answer








                            New contributor




                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            share|cite|improve this answer



                            share|cite|improve this answer






                            New contributor




                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.









                            answered 10 hours ago









                            Laurence LurioLaurence Lurio

                            612




                            612




                            New contributor




                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.





                            New contributor





                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






                            Laurence Lurio is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                            Check out our Code of Conduct.






















                                Aditya is a new contributor. Be nice, and check out our Code of Conduct.










                                draft saved

                                draft discarded


















                                Aditya is a new contributor. Be nice, and check out our Code of Conduct.













                                Aditya is a new contributor. Be nice, and check out our Code of Conduct.












                                Aditya is a new contributor. Be nice, and check out our Code of Conduct.
















                                Thanks for contributing an answer to Physics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f468608%2fcan-the-electrostatic-force-be-infinite-in-magnitude%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                How to make a Squid Proxy server?

                                Is this a new Fibonacci Identity?

                                19世紀