Inverse mapping with bilinear interpolation on an image
$begingroup$
The following is my solution for an inverse mapping with bilinear interpolation on an image. The original image is img
and newmatrix
is the transformed image. invRot
is the inverse transformation matrix.
How can I optimize the nested for loops (or remove them altogether) to give me a better time complexity for large values of row and col?
newmatrix = np.zeros((row, col, 3), np.uint8)
for r in range(row):
for c in range(col):
if offset > 0:
offset = -1 * offset
pt = np.array([r+offset,c,1]) #Adjust the offset.
newpt = np.matmul(invRot, pt) #Reverse map by reverse rotation and pick up color.
#Check the bounds of the inverse pts we got and if they lie in the original image,
#then copy the color from that original pt to the new matrix/image.
if (newpt[0] >= 0 and newpt[0] < (yLen - 1) and newpt[1] >= 0 and newpt[1] < (xLen - 1)):
x = np.asarray(newpt[1])
y = np.asarray(newpt[0])
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
Ia = img[y0, x0]
Ib = img[y1, x0]
Ic = img[y0, x1]
Id = img[y1, x1]
color1 = (x1-x) * (y1-y) * Ia
color2 = (x1-x) * (y-y0) * Ib
color3 = (x-x0) * (y1-y) * Ic
color4 = (x-x0) * (y-y0) * Id
weightedAvgColor = color1 + color2 + color3 + color4
newmatrix[r][c] = weightedAvgColor
python performance image matrix numpy
New contributor
$endgroup$
add a comment |
$begingroup$
The following is my solution for an inverse mapping with bilinear interpolation on an image. The original image is img
and newmatrix
is the transformed image. invRot
is the inverse transformation matrix.
How can I optimize the nested for loops (or remove them altogether) to give me a better time complexity for large values of row and col?
newmatrix = np.zeros((row, col, 3), np.uint8)
for r in range(row):
for c in range(col):
if offset > 0:
offset = -1 * offset
pt = np.array([r+offset,c,1]) #Adjust the offset.
newpt = np.matmul(invRot, pt) #Reverse map by reverse rotation and pick up color.
#Check the bounds of the inverse pts we got and if they lie in the original image,
#then copy the color from that original pt to the new matrix/image.
if (newpt[0] >= 0 and newpt[0] < (yLen - 1) and newpt[1] >= 0 and newpt[1] < (xLen - 1)):
x = np.asarray(newpt[1])
y = np.asarray(newpt[0])
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
Ia = img[y0, x0]
Ib = img[y1, x0]
Ic = img[y0, x1]
Id = img[y1, x1]
color1 = (x1-x) * (y1-y) * Ia
color2 = (x1-x) * (y-y0) * Ib
color3 = (x-x0) * (y1-y) * Ic
color4 = (x-x0) * (y-y0) * Id
weightedAvgColor = color1 + color2 + color3 + color4
newmatrix[r][c] = weightedAvgColor
python performance image matrix numpy
New contributor
$endgroup$
add a comment |
$begingroup$
The following is my solution for an inverse mapping with bilinear interpolation on an image. The original image is img
and newmatrix
is the transformed image. invRot
is the inverse transformation matrix.
How can I optimize the nested for loops (or remove them altogether) to give me a better time complexity for large values of row and col?
newmatrix = np.zeros((row, col, 3), np.uint8)
for r in range(row):
for c in range(col):
if offset > 0:
offset = -1 * offset
pt = np.array([r+offset,c,1]) #Adjust the offset.
newpt = np.matmul(invRot, pt) #Reverse map by reverse rotation and pick up color.
#Check the bounds of the inverse pts we got and if they lie in the original image,
#then copy the color from that original pt to the new matrix/image.
if (newpt[0] >= 0 and newpt[0] < (yLen - 1) and newpt[1] >= 0 and newpt[1] < (xLen - 1)):
x = np.asarray(newpt[1])
y = np.asarray(newpt[0])
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
Ia = img[y0, x0]
Ib = img[y1, x0]
Ic = img[y0, x1]
Id = img[y1, x1]
color1 = (x1-x) * (y1-y) * Ia
color2 = (x1-x) * (y-y0) * Ib
color3 = (x-x0) * (y1-y) * Ic
color4 = (x-x0) * (y-y0) * Id
weightedAvgColor = color1 + color2 + color3 + color4
newmatrix[r][c] = weightedAvgColor
python performance image matrix numpy
New contributor
$endgroup$
The following is my solution for an inverse mapping with bilinear interpolation on an image. The original image is img
and newmatrix
is the transformed image. invRot
is the inverse transformation matrix.
How can I optimize the nested for loops (or remove them altogether) to give me a better time complexity for large values of row and col?
newmatrix = np.zeros((row, col, 3), np.uint8)
for r in range(row):
for c in range(col):
if offset > 0:
offset = -1 * offset
pt = np.array([r+offset,c,1]) #Adjust the offset.
newpt = np.matmul(invRot, pt) #Reverse map by reverse rotation and pick up color.
#Check the bounds of the inverse pts we got and if they lie in the original image,
#then copy the color from that original pt to the new matrix/image.
if (newpt[0] >= 0 and newpt[0] < (yLen - 1) and newpt[1] >= 0 and newpt[1] < (xLen - 1)):
x = np.asarray(newpt[1])
y = np.asarray(newpt[0])
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
Ia = img[y0, x0]
Ib = img[y1, x0]
Ic = img[y0, x1]
Id = img[y1, x1]
color1 = (x1-x) * (y1-y) * Ia
color2 = (x1-x) * (y-y0) * Ib
color3 = (x-x0) * (y1-y) * Ic
color4 = (x-x0) * (y-y0) * Id
weightedAvgColor = color1 + color2 + color3 + color4
newmatrix[r][c] = weightedAvgColor
python performance image matrix numpy
python performance image matrix numpy
New contributor
New contributor
edited 13 mins ago
200_success
129k15153415
129k15153415
New contributor
asked 10 hours ago
The White WolfThe White Wolf
61
61
New contributor
New contributor
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["\$", "\$"]]);
});
});
}, "mathjax-editing");
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "196"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
The White Wolf is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213533%2finverse-mapping-with-bilinear-interpolation-on-an-image%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
The White Wolf is a new contributor. Be nice, and check out our Code of Conduct.
The White Wolf is a new contributor. Be nice, and check out our Code of Conduct.
The White Wolf is a new contributor. Be nice, and check out our Code of Conduct.
The White Wolf is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Code Review Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodereview.stackexchange.com%2fquestions%2f213533%2finverse-mapping-with-bilinear-interpolation-on-an-image%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown