Show that sequence is a Cauchy sequence
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
add a comment |
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
3
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago
add a comment |
$begingroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
$endgroup$
Prove that given sequence $$langle f_nrangle =1-frac{1}{2}+frac{1}{3}-frac{1}{4}+.....+frac{(-1)^{n-1}}{n}$$
is a Cauchy sequence
My attempt :
$|f_{n}-f_{m}|=Biggl|dfrac{(-1)^{m}}{m+1}+dfrac{(-1)^{m+1}}{m+2}cdotsdots+dfrac{(-1)^{n-1}}{n}Biggr|$
using $ m+1>m implies dfrac{1}{m+1}<dfrac{1}{m} $
$|f_{n}-f_{m}|le dfrac{1}{m}+dfrac{1}{m}+dfrac{1}{m}cdotscdotsdfrac{1}{m}$
$|f_{n}-f_{m}|ledfrac{n-m}{m}$
I don't know if I am proceeding correctly or if I am, how to proceed further, any hint would be really helpful .
sequences-and-series cauchy-sequences
sequences-and-series cauchy-sequences
edited 8 hours ago
Bernard
121k740116
121k740116
asked 8 hours ago
kira0705kira0705
1167
1167
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
3
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago
add a comment |
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
3
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago
1
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
3
3
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
add a comment |
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
add a comment |
$begingroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
$endgroup$
If you ignore the signs of the terms,
the result diverges.
So you can't do that.
$f_n
=sum_{k=1}^n dfrac{(-1)^k}{k}
$
so,
if $n > m$,
$f_n-f_m
=sum_{k=m+1}^n dfrac{(-1)^k}{k}
=sum_{k=1}^{n-m} dfrac{(-1)^{k+m}}{k+m}
=(-1)^msum_{k=1}^{n-m} dfrac{(-1)^{k}}{k+m}
$.
If
$n-m$ is even,
so $n-m = 2j$,
then
$begin{array}\
f_n-f_m
&=(-1)^msum_{k=1}^{2j} dfrac{(-1)^{k}}{k+m}\
&=(-1)^msum_{k=1}^{j} left(dfrac{(-1)^{2k-1}}{2k-1+m}+dfrac{(-1)^{2k}}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{-1}{2k-1+m}+dfrac{1}{2k+m}right)\
&=(-1)^msum_{k=1}^{j} (-1)^{2k-1}left(dfrac{(2k-1+m)-(2k+m)}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m+1}sum_{k=1}^{j} left(dfrac{-1}{(2k-1+m)(2k+m)}right)\
&=(-1)^{m}sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
text{so}\
|f_n-f_m|
&=sum_{k=1}^{j} left(dfrac{1}{(2k-1+m)(2k+m)}right)\
&=sum_{k=1}^{j}dfrac14 left(dfrac{1}{(k-frac12+frac{m}{2})(k+frac{m}{2})}right)\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{(k-1+frac{m}{2})(k+frac{m}{2})}right)
quadtext{this is the sneaky part}\
< dfrac14sum_{k=1}^{j} left(dfrac{1}{k-1+frac{m}{2}}-dfrac{1}{k+frac{m}{2}}right)\
&= dfrac14 left(dfrac{1}{frac{m}{2}}-dfrac{1}{j+frac{m}{2}}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{2j+m}right)\
&= dfrac12 left(dfrac{1}{m}-dfrac{1}{n}right)\
&< dfrac{1}{2m}\
&to 0 text{ as } m to infty\
end{array}
$
If $n-m$ is odd,
the sum changes
by at most $frac1{n}$
so it still goes to zero.
answered 8 hours ago
marty cohenmarty cohen
73.8k549128
73.8k549128
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
add a comment |
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
1
1
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
$begingroup$
Thank you for such an elaborate proof , not ignoring the signs was an important step indeed.
$endgroup$
– kira0705
7 hours ago
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
add a comment |
$begingroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
$endgroup$
Hint :
$$frac{1}{2n-1}-frac{1}{2n}=frac{1}{(2n-1)2n}leq frac{1}{(n-1)n}= frac{1}{n-1}-frac{1}{n} $$
answered 8 hours ago
Clément GuérinClément Guérin
10k1736
10k1736
add a comment |
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
add a comment |
$begingroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
$endgroup$
Fix $epsilon > 0$, then for $n > frac{2}{sqrt{epsilon}}$ (So since both sides of the inequality are positive, $n^2 > frac{4}{epsilon} implies frac{epsilon}{2} > frac{2}{n^2}$), observe that $$|f_n - f_{n+1}| = |frac{1}{n} + frac{1}{n+1}| = |frac{n+2}{n(n+1)}| = frac{n+2}{n(n+1)} < frac{n+2}{n^2} =frac{1}{n} +frac{2}{n^2} < frac{1}{frac{2}{sqrt{epsilon}}} + frac{epsilon}{2} = frac{sqrt{epsilon}}{2} + frac{epsilon}{2} < frac{epsilon}{2} + frac{epsilon}{2} = epsilon $$
edited 7 hours ago
answered 8 hours ago
user516079user516079
318210
318210
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3123120%2fshow-that-sequence-is-a-cauchy-sequence%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
Well, the limit of the sequence because of Leibniz' criterion.
$endgroup$
– egreg
8 hours ago
3
$begingroup$
Hint: a convergent sequence is Cauchy.
$endgroup$
– Bernard
8 hours ago