How to write Quadratic equation with negative coefficient












7















How to write Quadratic equation with negative coefficient in fp





For a=1, b=-5, c= 6, $ca x^2+cb x + cc=0$ gives 1x^2 + -5x + 6



But i want to have x^2 -5x + 6



documentclass{beamer}
usepackage{fp}
begin{document}
begin{frame}{Quadratic equation}
FPsetca{1}
FPsetcb{-5}
FPsetcc{6}
FPqsolvexonextwocacbcc
FPevalxone{clip(round(xone:4))}
FPevalxtwo{clip(round(xtwo:4))}
Quadratic equation : $ca x^2+cb x + cc=0$\[1cm]
Result: $x = xone quad text{and} quad x = xtwo$
end{frame}
end{document}









share|improve this question





























    7















    How to write Quadratic equation with negative coefficient in fp





    For a=1, b=-5, c= 6, $ca x^2+cb x + cc=0$ gives 1x^2 + -5x + 6



    But i want to have x^2 -5x + 6



    documentclass{beamer}
    usepackage{fp}
    begin{document}
    begin{frame}{Quadratic equation}
    FPsetca{1}
    FPsetcb{-5}
    FPsetcc{6}
    FPqsolvexonextwocacbcc
    FPevalxone{clip(round(xone:4))}
    FPevalxtwo{clip(round(xtwo:4))}
    Quadratic equation : $ca x^2+cb x + cc=0$\[1cm]
    Result: $x = xone quad text{and} quad x = xtwo$
    end{frame}
    end{document}









    share|improve this question



























      7












      7








      7


      0






      How to write Quadratic equation with negative coefficient in fp





      For a=1, b=-5, c= 6, $ca x^2+cb x + cc=0$ gives 1x^2 + -5x + 6



      But i want to have x^2 -5x + 6



      documentclass{beamer}
      usepackage{fp}
      begin{document}
      begin{frame}{Quadratic equation}
      FPsetca{1}
      FPsetcb{-5}
      FPsetcc{6}
      FPqsolvexonextwocacbcc
      FPevalxone{clip(round(xone:4))}
      FPevalxtwo{clip(round(xtwo:4))}
      Quadratic equation : $ca x^2+cb x + cc=0$\[1cm]
      Result: $x = xone quad text{and} quad x = xtwo$
      end{frame}
      end{document}









      share|improve this question
















      How to write Quadratic equation with negative coefficient in fp





      For a=1, b=-5, c= 6, $ca x^2+cb x + cc=0$ gives 1x^2 + -5x + 6



      But i want to have x^2 -5x + 6



      documentclass{beamer}
      usepackage{fp}
      begin{document}
      begin{frame}{Quadratic equation}
      FPsetca{1}
      FPsetcb{-5}
      FPsetcc{6}
      FPqsolvexonextwocacbcc
      FPevalxone{clip(round(xone:4))}
      FPevalxtwo{clip(round(xtwo:4))}
      Quadratic equation : $ca x^2+cb x + cc=0$\[1cm]
      Result: $x = xone quad text{and} quad x = xtwo$
      end{frame}
      end{document}






      fp






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited 4 hours ago







      sandu

















      asked 5 hours ago









      sandusandu

      3,63242855




      3,63242855






















          3 Answers
          3






          active

          oldest

          votes


















          5














          Some comparison are necessary. This assumes the coefficients are integers.



          documentclass{beamer}
          usepackage{fp}

          newcommand{quadratic}[4][x]{%
          FPsetca{#2}%
          FPsetcb{#3}%
          FPsetcc{#4}%
          FPqsolvexonextwocacbcc
          FPevalxone{clip(round(xone:4))}%
          FPevalxtwo{clip(round(xtwo:4))}%
          Quadratic equation: $
          ifnumca=1
          else
          ifnumca=-1
          -%
          else
          ca
          fi
          fi
          #1^2%
          ifnumcb=0
          else
          ifnumcb>0
          +%
          ifnumcb=1
          else
          cb
          fi
          else
          ifnumcb=-1
          -%
          else
          cb
          fi
          fi
          #1%
          fi
          ifnumcc=0
          else
          ifnumcc>0
          +
          fi
          cc
          fi
          $\[bigskipamount]
          Result: $#1=xone$ and $#1=xtwo$%
          }

          begin{document}
          begin{frame}{Quadratic equation}

          quadratic{1}{-5}{6}

          bigskip

          quadratic[t]{2}{3}{1}

          bigskip

          quadratic{2}{0}{-8}

          end{frame}
          end{document}


          With expl3:



          documentclass{beamer}
          usepackage{xparse}

          ExplSyntaxOn

          NewDocumentCommand{quadratic}{O{x}mmm}
          {
          Quadratic~equation:~$
          str_case:nnF { #2 }
          {
          {1}{}
          {-1}{-}
          }
          {#2}
          #1^{2}
          str_case:nnF { #3 }
          {
          {0}{}
          {1}{+#1}
          {-1}{-#1}
          }
          { fp_compare:nT { #3>0 } { + } #3#1 }
          fp_compare:nF { #4 = 0 }
          {
          fp_compare:nT { #4 > 0 } { + }
          }
          #4
          $\[bigskipamount]
          Result:~$#1=sandu_solve:nnnn{+}{#2}{#3}{#4}$~and~
          $#1=sandu_solve:nnnn{-}{#2}{#3}{#4}$
          }
          cs_new:Nn sandu_solve:nnnn
          {
          fp_eval:n { round( ( -(#3) #1 sqrt((#3)^2-4*(#2)*(#4)) )/(2*(#2)), 4) }
          }
          ExplSyntaxOff

          begin{document}
          begin{frame}{Quadratic equation}

          quadratic{1}{-5}{6}

          bigskip

          quadratic[t]{2}{3}{1}

          bigskip

          quadratic{2}{0}{-8}

          end{frame}
          end{document}


          expl3






          share|improve this answer

































            4














            Will also work with addterm -5x in addition to the intended addtermcb x.



            The addterm macro takes a single argument, expands it once, and passes it to addtermaux. The addtermaux definition will grab the first token of the argument and examine to see if it is a minus - character. If so, it typesets a - and the rest of the argument. If not, it sees whether the first token was a + character. If so, it typesets a + and the rest of the argument. If neither of the above cases apply, it typesets a + and the complete argument.



            In this way, the right output is provided whether cc is set to 6 or set to +6.



            documentclass{beamer}
            usepackage{fp}
            newcommandaddterm[1]{expandafteraddtermaux#1relax}
            defaddtermaux#1#2relax{ifx-#1-#2elseifx+#1+#2else+#1#2fifi}
            begin{document}
            begin{frame}{Quadratic equation}
            FPsetca{1}
            FPsetcb{-5}
            FPsetcc{6}
            FPqsolvexonextwocacbcc
            FPevalxone{clip(round(xone:4))}
            FPevalxtwo{clip(round(xtwo:4))}
            Quadratic equation : $ca x^2 addtermcb x addtermcc=0$\[1cm]
            Result: $x = xone quad text{and} quad x = xtwo$
            end{frame}
            end{document}


            enter image description here






            share|improve this answer


























            • could you explain newcommand and def...

              – sandu
              4 hours ago











            • @sandu I have edited the answer to provide context.

              – Steven B. Segletes
              3 hours ago



















            3














            Note the [fragile] in begin{frame}. Necessary with FPifpos.



            documentclass{beamer}
            usepackage{fp}
            begin{document}
            begin{frame}[fragile]{Quadratic equation}
            FPsetca{1}
            FPsetcb{-5}
            FPsetcc{6}
            FPqsolvexonextwocacbcc
            FPevalxone{clip(round(xone:4))}
            FPevalxtwo{clip(round(xtwo:4))}
            FPevalbabs{clip(round(abs(cb):4))}
            FPevalcabs{clip(round(abs(cc):4))}

            Quadratic equation : $ca x^2$ FPifposcb $+$ else $-$ fi $babs x$ FPifposcc $+$ else $-$ fi $cabs=0$ %\[1cm]

            Result: $x = xone quad text{and} quad x = xtwo$


            end{frame}
            end{document}


            enter image description here






            share|improve this answer























              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "85"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f480444%2fhow-to-write-quadratic-equation-with-negative-coefficient%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              3 Answers
              3






              active

              oldest

              votes








              3 Answers
              3






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              5














              Some comparison are necessary. This assumes the coefficients are integers.



              documentclass{beamer}
              usepackage{fp}

              newcommand{quadratic}[4][x]{%
              FPsetca{#2}%
              FPsetcb{#3}%
              FPsetcc{#4}%
              FPqsolvexonextwocacbcc
              FPevalxone{clip(round(xone:4))}%
              FPevalxtwo{clip(round(xtwo:4))}%
              Quadratic equation: $
              ifnumca=1
              else
              ifnumca=-1
              -%
              else
              ca
              fi
              fi
              #1^2%
              ifnumcb=0
              else
              ifnumcb>0
              +%
              ifnumcb=1
              else
              cb
              fi
              else
              ifnumcb=-1
              -%
              else
              cb
              fi
              fi
              #1%
              fi
              ifnumcc=0
              else
              ifnumcc>0
              +
              fi
              cc
              fi
              $\[bigskipamount]
              Result: $#1=xone$ and $#1=xtwo$%
              }

              begin{document}
              begin{frame}{Quadratic equation}

              quadratic{1}{-5}{6}

              bigskip

              quadratic[t]{2}{3}{1}

              bigskip

              quadratic{2}{0}{-8}

              end{frame}
              end{document}


              With expl3:



              documentclass{beamer}
              usepackage{xparse}

              ExplSyntaxOn

              NewDocumentCommand{quadratic}{O{x}mmm}
              {
              Quadratic~equation:~$
              str_case:nnF { #2 }
              {
              {1}{}
              {-1}{-}
              }
              {#2}
              #1^{2}
              str_case:nnF { #3 }
              {
              {0}{}
              {1}{+#1}
              {-1}{-#1}
              }
              { fp_compare:nT { #3>0 } { + } #3#1 }
              fp_compare:nF { #4 = 0 }
              {
              fp_compare:nT { #4 > 0 } { + }
              }
              #4
              $\[bigskipamount]
              Result:~$#1=sandu_solve:nnnn{+}{#2}{#3}{#4}$~and~
              $#1=sandu_solve:nnnn{-}{#2}{#3}{#4}$
              }
              cs_new:Nn sandu_solve:nnnn
              {
              fp_eval:n { round( ( -(#3) #1 sqrt((#3)^2-4*(#2)*(#4)) )/(2*(#2)), 4) }
              }
              ExplSyntaxOff

              begin{document}
              begin{frame}{Quadratic equation}

              quadratic{1}{-5}{6}

              bigskip

              quadratic[t]{2}{3}{1}

              bigskip

              quadratic{2}{0}{-8}

              end{frame}
              end{document}


              expl3






              share|improve this answer






























                5














                Some comparison are necessary. This assumes the coefficients are integers.



                documentclass{beamer}
                usepackage{fp}

                newcommand{quadratic}[4][x]{%
                FPsetca{#2}%
                FPsetcb{#3}%
                FPsetcc{#4}%
                FPqsolvexonextwocacbcc
                FPevalxone{clip(round(xone:4))}%
                FPevalxtwo{clip(round(xtwo:4))}%
                Quadratic equation: $
                ifnumca=1
                else
                ifnumca=-1
                -%
                else
                ca
                fi
                fi
                #1^2%
                ifnumcb=0
                else
                ifnumcb>0
                +%
                ifnumcb=1
                else
                cb
                fi
                else
                ifnumcb=-1
                -%
                else
                cb
                fi
                fi
                #1%
                fi
                ifnumcc=0
                else
                ifnumcc>0
                +
                fi
                cc
                fi
                $\[bigskipamount]
                Result: $#1=xone$ and $#1=xtwo$%
                }

                begin{document}
                begin{frame}{Quadratic equation}

                quadratic{1}{-5}{6}

                bigskip

                quadratic[t]{2}{3}{1}

                bigskip

                quadratic{2}{0}{-8}

                end{frame}
                end{document}


                With expl3:



                documentclass{beamer}
                usepackage{xparse}

                ExplSyntaxOn

                NewDocumentCommand{quadratic}{O{x}mmm}
                {
                Quadratic~equation:~$
                str_case:nnF { #2 }
                {
                {1}{}
                {-1}{-}
                }
                {#2}
                #1^{2}
                str_case:nnF { #3 }
                {
                {0}{}
                {1}{+#1}
                {-1}{-#1}
                }
                { fp_compare:nT { #3>0 } { + } #3#1 }
                fp_compare:nF { #4 = 0 }
                {
                fp_compare:nT { #4 > 0 } { + }
                }
                #4
                $\[bigskipamount]
                Result:~$#1=sandu_solve:nnnn{+}{#2}{#3}{#4}$~and~
                $#1=sandu_solve:nnnn{-}{#2}{#3}{#4}$
                }
                cs_new:Nn sandu_solve:nnnn
                {
                fp_eval:n { round( ( -(#3) #1 sqrt((#3)^2-4*(#2)*(#4)) )/(2*(#2)), 4) }
                }
                ExplSyntaxOff

                begin{document}
                begin{frame}{Quadratic equation}

                quadratic{1}{-5}{6}

                bigskip

                quadratic[t]{2}{3}{1}

                bigskip

                quadratic{2}{0}{-8}

                end{frame}
                end{document}


                expl3






                share|improve this answer




























                  5












                  5








                  5







                  Some comparison are necessary. This assumes the coefficients are integers.



                  documentclass{beamer}
                  usepackage{fp}

                  newcommand{quadratic}[4][x]{%
                  FPsetca{#2}%
                  FPsetcb{#3}%
                  FPsetcc{#4}%
                  FPqsolvexonextwocacbcc
                  FPevalxone{clip(round(xone:4))}%
                  FPevalxtwo{clip(round(xtwo:4))}%
                  Quadratic equation: $
                  ifnumca=1
                  else
                  ifnumca=-1
                  -%
                  else
                  ca
                  fi
                  fi
                  #1^2%
                  ifnumcb=0
                  else
                  ifnumcb>0
                  +%
                  ifnumcb=1
                  else
                  cb
                  fi
                  else
                  ifnumcb=-1
                  -%
                  else
                  cb
                  fi
                  fi
                  #1%
                  fi
                  ifnumcc=0
                  else
                  ifnumcc>0
                  +
                  fi
                  cc
                  fi
                  $\[bigskipamount]
                  Result: $#1=xone$ and $#1=xtwo$%
                  }

                  begin{document}
                  begin{frame}{Quadratic equation}

                  quadratic{1}{-5}{6}

                  bigskip

                  quadratic[t]{2}{3}{1}

                  bigskip

                  quadratic{2}{0}{-8}

                  end{frame}
                  end{document}


                  With expl3:



                  documentclass{beamer}
                  usepackage{xparse}

                  ExplSyntaxOn

                  NewDocumentCommand{quadratic}{O{x}mmm}
                  {
                  Quadratic~equation:~$
                  str_case:nnF { #2 }
                  {
                  {1}{}
                  {-1}{-}
                  }
                  {#2}
                  #1^{2}
                  str_case:nnF { #3 }
                  {
                  {0}{}
                  {1}{+#1}
                  {-1}{-#1}
                  }
                  { fp_compare:nT { #3>0 } { + } #3#1 }
                  fp_compare:nF { #4 = 0 }
                  {
                  fp_compare:nT { #4 > 0 } { + }
                  }
                  #4
                  $\[bigskipamount]
                  Result:~$#1=sandu_solve:nnnn{+}{#2}{#3}{#4}$~and~
                  $#1=sandu_solve:nnnn{-}{#2}{#3}{#4}$
                  }
                  cs_new:Nn sandu_solve:nnnn
                  {
                  fp_eval:n { round( ( -(#3) #1 sqrt((#3)^2-4*(#2)*(#4)) )/(2*(#2)), 4) }
                  }
                  ExplSyntaxOff

                  begin{document}
                  begin{frame}{Quadratic equation}

                  quadratic{1}{-5}{6}

                  bigskip

                  quadratic[t]{2}{3}{1}

                  bigskip

                  quadratic{2}{0}{-8}

                  end{frame}
                  end{document}


                  expl3






                  share|improve this answer















                  Some comparison are necessary. This assumes the coefficients are integers.



                  documentclass{beamer}
                  usepackage{fp}

                  newcommand{quadratic}[4][x]{%
                  FPsetca{#2}%
                  FPsetcb{#3}%
                  FPsetcc{#4}%
                  FPqsolvexonextwocacbcc
                  FPevalxone{clip(round(xone:4))}%
                  FPevalxtwo{clip(round(xtwo:4))}%
                  Quadratic equation: $
                  ifnumca=1
                  else
                  ifnumca=-1
                  -%
                  else
                  ca
                  fi
                  fi
                  #1^2%
                  ifnumcb=0
                  else
                  ifnumcb>0
                  +%
                  ifnumcb=1
                  else
                  cb
                  fi
                  else
                  ifnumcb=-1
                  -%
                  else
                  cb
                  fi
                  fi
                  #1%
                  fi
                  ifnumcc=0
                  else
                  ifnumcc>0
                  +
                  fi
                  cc
                  fi
                  $\[bigskipamount]
                  Result: $#1=xone$ and $#1=xtwo$%
                  }

                  begin{document}
                  begin{frame}{Quadratic equation}

                  quadratic{1}{-5}{6}

                  bigskip

                  quadratic[t]{2}{3}{1}

                  bigskip

                  quadratic{2}{0}{-8}

                  end{frame}
                  end{document}


                  With expl3:



                  documentclass{beamer}
                  usepackage{xparse}

                  ExplSyntaxOn

                  NewDocumentCommand{quadratic}{O{x}mmm}
                  {
                  Quadratic~equation:~$
                  str_case:nnF { #2 }
                  {
                  {1}{}
                  {-1}{-}
                  }
                  {#2}
                  #1^{2}
                  str_case:nnF { #3 }
                  {
                  {0}{}
                  {1}{+#1}
                  {-1}{-#1}
                  }
                  { fp_compare:nT { #3>0 } { + } #3#1 }
                  fp_compare:nF { #4 = 0 }
                  {
                  fp_compare:nT { #4 > 0 } { + }
                  }
                  #4
                  $\[bigskipamount]
                  Result:~$#1=sandu_solve:nnnn{+}{#2}{#3}{#4}$~and~
                  $#1=sandu_solve:nnnn{-}{#2}{#3}{#4}$
                  }
                  cs_new:Nn sandu_solve:nnnn
                  {
                  fp_eval:n { round( ( -(#3) #1 sqrt((#3)^2-4*(#2)*(#4)) )/(2*(#2)), 4) }
                  }
                  ExplSyntaxOff

                  begin{document}
                  begin{frame}{Quadratic equation}

                  quadratic{1}{-5}{6}

                  bigskip

                  quadratic[t]{2}{3}{1}

                  bigskip

                  quadratic{2}{0}{-8}

                  end{frame}
                  end{document}


                  expl3







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited 3 hours ago

























                  answered 4 hours ago









                  egregegreg

                  728k8819233233




                  728k8819233233























                      4














                      Will also work with addterm -5x in addition to the intended addtermcb x.



                      The addterm macro takes a single argument, expands it once, and passes it to addtermaux. The addtermaux definition will grab the first token of the argument and examine to see if it is a minus - character. If so, it typesets a - and the rest of the argument. If not, it sees whether the first token was a + character. If so, it typesets a + and the rest of the argument. If neither of the above cases apply, it typesets a + and the complete argument.



                      In this way, the right output is provided whether cc is set to 6 or set to +6.



                      documentclass{beamer}
                      usepackage{fp}
                      newcommandaddterm[1]{expandafteraddtermaux#1relax}
                      defaddtermaux#1#2relax{ifx-#1-#2elseifx+#1+#2else+#1#2fifi}
                      begin{document}
                      begin{frame}{Quadratic equation}
                      FPsetca{1}
                      FPsetcb{-5}
                      FPsetcc{6}
                      FPqsolvexonextwocacbcc
                      FPevalxone{clip(round(xone:4))}
                      FPevalxtwo{clip(round(xtwo:4))}
                      Quadratic equation : $ca x^2 addtermcb x addtermcc=0$\[1cm]
                      Result: $x = xone quad text{and} quad x = xtwo$
                      end{frame}
                      end{document}


                      enter image description here






                      share|improve this answer


























                      • could you explain newcommand and def...

                        – sandu
                        4 hours ago











                      • @sandu I have edited the answer to provide context.

                        – Steven B. Segletes
                        3 hours ago
















                      4














                      Will also work with addterm -5x in addition to the intended addtermcb x.



                      The addterm macro takes a single argument, expands it once, and passes it to addtermaux. The addtermaux definition will grab the first token of the argument and examine to see if it is a minus - character. If so, it typesets a - and the rest of the argument. If not, it sees whether the first token was a + character. If so, it typesets a + and the rest of the argument. If neither of the above cases apply, it typesets a + and the complete argument.



                      In this way, the right output is provided whether cc is set to 6 or set to +6.



                      documentclass{beamer}
                      usepackage{fp}
                      newcommandaddterm[1]{expandafteraddtermaux#1relax}
                      defaddtermaux#1#2relax{ifx-#1-#2elseifx+#1+#2else+#1#2fifi}
                      begin{document}
                      begin{frame}{Quadratic equation}
                      FPsetca{1}
                      FPsetcb{-5}
                      FPsetcc{6}
                      FPqsolvexonextwocacbcc
                      FPevalxone{clip(round(xone:4))}
                      FPevalxtwo{clip(round(xtwo:4))}
                      Quadratic equation : $ca x^2 addtermcb x addtermcc=0$\[1cm]
                      Result: $x = xone quad text{and} quad x = xtwo$
                      end{frame}
                      end{document}


                      enter image description here






                      share|improve this answer


























                      • could you explain newcommand and def...

                        – sandu
                        4 hours ago











                      • @sandu I have edited the answer to provide context.

                        – Steven B. Segletes
                        3 hours ago














                      4












                      4








                      4







                      Will also work with addterm -5x in addition to the intended addtermcb x.



                      The addterm macro takes a single argument, expands it once, and passes it to addtermaux. The addtermaux definition will grab the first token of the argument and examine to see if it is a minus - character. If so, it typesets a - and the rest of the argument. If not, it sees whether the first token was a + character. If so, it typesets a + and the rest of the argument. If neither of the above cases apply, it typesets a + and the complete argument.



                      In this way, the right output is provided whether cc is set to 6 or set to +6.



                      documentclass{beamer}
                      usepackage{fp}
                      newcommandaddterm[1]{expandafteraddtermaux#1relax}
                      defaddtermaux#1#2relax{ifx-#1-#2elseifx+#1+#2else+#1#2fifi}
                      begin{document}
                      begin{frame}{Quadratic equation}
                      FPsetca{1}
                      FPsetcb{-5}
                      FPsetcc{6}
                      FPqsolvexonextwocacbcc
                      FPevalxone{clip(round(xone:4))}
                      FPevalxtwo{clip(round(xtwo:4))}
                      Quadratic equation : $ca x^2 addtermcb x addtermcc=0$\[1cm]
                      Result: $x = xone quad text{and} quad x = xtwo$
                      end{frame}
                      end{document}


                      enter image description here






                      share|improve this answer















                      Will also work with addterm -5x in addition to the intended addtermcb x.



                      The addterm macro takes a single argument, expands it once, and passes it to addtermaux. The addtermaux definition will grab the first token of the argument and examine to see if it is a minus - character. If so, it typesets a - and the rest of the argument. If not, it sees whether the first token was a + character. If so, it typesets a + and the rest of the argument. If neither of the above cases apply, it typesets a + and the complete argument.



                      In this way, the right output is provided whether cc is set to 6 or set to +6.



                      documentclass{beamer}
                      usepackage{fp}
                      newcommandaddterm[1]{expandafteraddtermaux#1relax}
                      defaddtermaux#1#2relax{ifx-#1-#2elseifx+#1+#2else+#1#2fifi}
                      begin{document}
                      begin{frame}{Quadratic equation}
                      FPsetca{1}
                      FPsetcb{-5}
                      FPsetcc{6}
                      FPqsolvexonextwocacbcc
                      FPevalxone{clip(round(xone:4))}
                      FPevalxtwo{clip(round(xtwo:4))}
                      Quadratic equation : $ca x^2 addtermcb x addtermcc=0$\[1cm]
                      Result: $x = xone quad text{and} quad x = xtwo$
                      end{frame}
                      end{document}


                      enter image description here







                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited 3 hours ago

























                      answered 4 hours ago









                      Steven B. SegletesSteven B. Segletes

                      158k9204411




                      158k9204411













                      • could you explain newcommand and def...

                        – sandu
                        4 hours ago











                      • @sandu I have edited the answer to provide context.

                        – Steven B. Segletes
                        3 hours ago



















                      • could you explain newcommand and def...

                        – sandu
                        4 hours ago











                      • @sandu I have edited the answer to provide context.

                        – Steven B. Segletes
                        3 hours ago

















                      could you explain newcommand and def...

                      – sandu
                      4 hours ago





                      could you explain newcommand and def...

                      – sandu
                      4 hours ago













                      @sandu I have edited the answer to provide context.

                      – Steven B. Segletes
                      3 hours ago





                      @sandu I have edited the answer to provide context.

                      – Steven B. Segletes
                      3 hours ago











                      3














                      Note the [fragile] in begin{frame}. Necessary with FPifpos.



                      documentclass{beamer}
                      usepackage{fp}
                      begin{document}
                      begin{frame}[fragile]{Quadratic equation}
                      FPsetca{1}
                      FPsetcb{-5}
                      FPsetcc{6}
                      FPqsolvexonextwocacbcc
                      FPevalxone{clip(round(xone:4))}
                      FPevalxtwo{clip(round(xtwo:4))}
                      FPevalbabs{clip(round(abs(cb):4))}
                      FPevalcabs{clip(round(abs(cc):4))}

                      Quadratic equation : $ca x^2$ FPifposcb $+$ else $-$ fi $babs x$ FPifposcc $+$ else $-$ fi $cabs=0$ %\[1cm]

                      Result: $x = xone quad text{and} quad x = xtwo$


                      end{frame}
                      end{document}


                      enter image description here






                      share|improve this answer




























                        3














                        Note the [fragile] in begin{frame}. Necessary with FPifpos.



                        documentclass{beamer}
                        usepackage{fp}
                        begin{document}
                        begin{frame}[fragile]{Quadratic equation}
                        FPsetca{1}
                        FPsetcb{-5}
                        FPsetcc{6}
                        FPqsolvexonextwocacbcc
                        FPevalxone{clip(round(xone:4))}
                        FPevalxtwo{clip(round(xtwo:4))}
                        FPevalbabs{clip(round(abs(cb):4))}
                        FPevalcabs{clip(round(abs(cc):4))}

                        Quadratic equation : $ca x^2$ FPifposcb $+$ else $-$ fi $babs x$ FPifposcc $+$ else $-$ fi $cabs=0$ %\[1cm]

                        Result: $x = xone quad text{and} quad x = xtwo$


                        end{frame}
                        end{document}


                        enter image description here






                        share|improve this answer


























                          3












                          3








                          3







                          Note the [fragile] in begin{frame}. Necessary with FPifpos.



                          documentclass{beamer}
                          usepackage{fp}
                          begin{document}
                          begin{frame}[fragile]{Quadratic equation}
                          FPsetca{1}
                          FPsetcb{-5}
                          FPsetcc{6}
                          FPqsolvexonextwocacbcc
                          FPevalxone{clip(round(xone:4))}
                          FPevalxtwo{clip(round(xtwo:4))}
                          FPevalbabs{clip(round(abs(cb):4))}
                          FPevalcabs{clip(round(abs(cc):4))}

                          Quadratic equation : $ca x^2$ FPifposcb $+$ else $-$ fi $babs x$ FPifposcc $+$ else $-$ fi $cabs=0$ %\[1cm]

                          Result: $x = xone quad text{and} quad x = xtwo$


                          end{frame}
                          end{document}


                          enter image description here






                          share|improve this answer













                          Note the [fragile] in begin{frame}. Necessary with FPifpos.



                          documentclass{beamer}
                          usepackage{fp}
                          begin{document}
                          begin{frame}[fragile]{Quadratic equation}
                          FPsetca{1}
                          FPsetcb{-5}
                          FPsetcc{6}
                          FPqsolvexonextwocacbcc
                          FPevalxone{clip(round(xone:4))}
                          FPevalxtwo{clip(round(xtwo:4))}
                          FPevalbabs{clip(round(abs(cb):4))}
                          FPevalcabs{clip(round(abs(cc):4))}

                          Quadratic equation : $ca x^2$ FPifposcb $+$ else $-$ fi $babs x$ FPifposcc $+$ else $-$ fi $cabs=0$ %\[1cm]

                          Result: $x = xone quad text{and} quad x = xtwo$


                          end{frame}
                          end{document}


                          enter image description here







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 4 hours ago









                          quark67quark67

                          41026




                          41026






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f480444%2fhow-to-write-quadratic-equation-with-negative-coefficient%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              How to make a Squid Proxy server?

                              Is this a new Fibonacci Identity?

                              19世紀