Expression for sum of n exponentials
$begingroup$
So I have this sum of exponentials and I would like to find an expression for it.
$$sum^n_{i=1} e^{mu(i-1)} $$
Note that $i$ is not an imaginary indicator. I am aware there is a formula for summing a purely exponential sum, but I am not clear as to what happens to the $mu$.
sequences-and-series summation geometric-series
$endgroup$
add a comment |
$begingroup$
So I have this sum of exponentials and I would like to find an expression for it.
$$sum^n_{i=1} e^{mu(i-1)} $$
Note that $i$ is not an imaginary indicator. I am aware there is a formula for summing a purely exponential sum, but I am not clear as to what happens to the $mu$.
sequences-and-series summation geometric-series
$endgroup$
add a comment |
$begingroup$
So I have this sum of exponentials and I would like to find an expression for it.
$$sum^n_{i=1} e^{mu(i-1)} $$
Note that $i$ is not an imaginary indicator. I am aware there is a formula for summing a purely exponential sum, but I am not clear as to what happens to the $mu$.
sequences-and-series summation geometric-series
$endgroup$
So I have this sum of exponentials and I would like to find an expression for it.
$$sum^n_{i=1} e^{mu(i-1)} $$
Note that $i$ is not an imaginary indicator. I am aware there is a formula for summing a purely exponential sum, but I am not clear as to what happens to the $mu$.
sequences-and-series summation geometric-series
sequences-and-series summation geometric-series
asked 7 hours ago
DioDio
928
928
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
The sum $S$ can be rewritten as $$S= sum_{i=0}^{n-1} e^{mu i}=sum_{i=0}^{n-1} (e^{mu})^i=frac{1-e^{mu n}}{1-e^{mu}}$$ since the geometric series $$sum_{i=0}^{n-1} x^{i}=frac{1-x^n}{1-x}$$
$endgroup$
add a comment |
$begingroup$
Define $a=e^mu$ when $mune 0$. Then you have $$sum^n_{i=1} e^{mu(i-1)} =sum^n_{i=1} a^{i-1}=1+a+cdots+a^{n-1}={a^n-1over a-1}={e^{mu n}-1over e^mu -1} $$For $mu =0 $ we obtain$$sum^n_{i=1} e^{mu(i-1)}=n$$
$endgroup$
add a comment |
$begingroup$
One may recall that
$$
sum_{i=1}^nx^{i-1}=frac{1-x^n}{1-x},qquad xneq1.
$$ What if you put $x=e^mu$?
$endgroup$
add a comment |
$begingroup$
Hint:
This the sum of the $n$ first terms of the geometric series with ratio $mathrm e^mu$, since $;mathrm e^{mu(i-1)}=(mathrm e^{mu})^{i-1}$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071343%2fexpression-for-sum-of-n-exponentials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The sum $S$ can be rewritten as $$S= sum_{i=0}^{n-1} e^{mu i}=sum_{i=0}^{n-1} (e^{mu})^i=frac{1-e^{mu n}}{1-e^{mu}}$$ since the geometric series $$sum_{i=0}^{n-1} x^{i}=frac{1-x^n}{1-x}$$
$endgroup$
add a comment |
$begingroup$
The sum $S$ can be rewritten as $$S= sum_{i=0}^{n-1} e^{mu i}=sum_{i=0}^{n-1} (e^{mu})^i=frac{1-e^{mu n}}{1-e^{mu}}$$ since the geometric series $$sum_{i=0}^{n-1} x^{i}=frac{1-x^n}{1-x}$$
$endgroup$
add a comment |
$begingroup$
The sum $S$ can be rewritten as $$S= sum_{i=0}^{n-1} e^{mu i}=sum_{i=0}^{n-1} (e^{mu})^i=frac{1-e^{mu n}}{1-e^{mu}}$$ since the geometric series $$sum_{i=0}^{n-1} x^{i}=frac{1-x^n}{1-x}$$
$endgroup$
The sum $S$ can be rewritten as $$S= sum_{i=0}^{n-1} e^{mu i}=sum_{i=0}^{n-1} (e^{mu})^i=frac{1-e^{mu n}}{1-e^{mu}}$$ since the geometric series $$sum_{i=0}^{n-1} x^{i}=frac{1-x^n}{1-x}$$
answered 7 hours ago
aledenaleden
1,962511
1,962511
add a comment |
add a comment |
$begingroup$
Define $a=e^mu$ when $mune 0$. Then you have $$sum^n_{i=1} e^{mu(i-1)} =sum^n_{i=1} a^{i-1}=1+a+cdots+a^{n-1}={a^n-1over a-1}={e^{mu n}-1over e^mu -1} $$For $mu =0 $ we obtain$$sum^n_{i=1} e^{mu(i-1)}=n$$
$endgroup$
add a comment |
$begingroup$
Define $a=e^mu$ when $mune 0$. Then you have $$sum^n_{i=1} e^{mu(i-1)} =sum^n_{i=1} a^{i-1}=1+a+cdots+a^{n-1}={a^n-1over a-1}={e^{mu n}-1over e^mu -1} $$For $mu =0 $ we obtain$$sum^n_{i=1} e^{mu(i-1)}=n$$
$endgroup$
add a comment |
$begingroup$
Define $a=e^mu$ when $mune 0$. Then you have $$sum^n_{i=1} e^{mu(i-1)} =sum^n_{i=1} a^{i-1}=1+a+cdots+a^{n-1}={a^n-1over a-1}={e^{mu n}-1over e^mu -1} $$For $mu =0 $ we obtain$$sum^n_{i=1} e^{mu(i-1)}=n$$
$endgroup$
Define $a=e^mu$ when $mune 0$. Then you have $$sum^n_{i=1} e^{mu(i-1)} =sum^n_{i=1} a^{i-1}=1+a+cdots+a^{n-1}={a^n-1over a-1}={e^{mu n}-1over e^mu -1} $$For $mu =0 $ we obtain$$sum^n_{i=1} e^{mu(i-1)}=n$$
answered 7 hours ago
Mostafa AyazMostafa Ayaz
14.8k3938
14.8k3938
add a comment |
add a comment |
$begingroup$
One may recall that
$$
sum_{i=1}^nx^{i-1}=frac{1-x^n}{1-x},qquad xneq1.
$$ What if you put $x=e^mu$?
$endgroup$
add a comment |
$begingroup$
One may recall that
$$
sum_{i=1}^nx^{i-1}=frac{1-x^n}{1-x},qquad xneq1.
$$ What if you put $x=e^mu$?
$endgroup$
add a comment |
$begingroup$
One may recall that
$$
sum_{i=1}^nx^{i-1}=frac{1-x^n}{1-x},qquad xneq1.
$$ What if you put $x=e^mu$?
$endgroup$
One may recall that
$$
sum_{i=1}^nx^{i-1}=frac{1-x^n}{1-x},qquad xneq1.
$$ What if you put $x=e^mu$?
answered 7 hours ago
Olivier OloaOlivier Oloa
108k17176293
108k17176293
add a comment |
add a comment |
$begingroup$
Hint:
This the sum of the $n$ first terms of the geometric series with ratio $mathrm e^mu$, since $;mathrm e^{mu(i-1)}=(mathrm e^{mu})^{i-1}$.
$endgroup$
add a comment |
$begingroup$
Hint:
This the sum of the $n$ first terms of the geometric series with ratio $mathrm e^mu$, since $;mathrm e^{mu(i-1)}=(mathrm e^{mu})^{i-1}$.
$endgroup$
add a comment |
$begingroup$
Hint:
This the sum of the $n$ first terms of the geometric series with ratio $mathrm e^mu$, since $;mathrm e^{mu(i-1)}=(mathrm e^{mu})^{i-1}$.
$endgroup$
Hint:
This the sum of the $n$ first terms of the geometric series with ratio $mathrm e^mu$, since $;mathrm e^{mu(i-1)}=(mathrm e^{mu})^{i-1}$.
answered 7 hours ago
BernardBernard
119k639112
119k639112
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3071343%2fexpression-for-sum-of-n-exponentials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown